182 research outputs found

    BASIS FOR TARGETING MET ACTIVATION MEDIATED RESISTANCE TO PI3K INHIBITION IN BREAST CANCER

    Get PDF
    The identification of resistance mechanisms to emerging therapies, such as those targeting the PI3K pathway and the MET receptor, has the potential to benefit a significant number of patients with breast cancer. In this study we hypothesized that concurrent aberrations in PI3K and MET will render breast cancers resistant to therapies targeting each pathway, and that combination therapy targeting the PI3K and MET pathway will optimize therapy-effect by preventing the acquisition of resistance. We analyzed cMET and phospho-cMET levels in 257 breast cancer samples and found that high levels of both the proteins were seen in all breast cancer subtypes, which correlated with poor prognosis.(1) We also analyzed DNA from 971 FFPE early breast tumors, and showed that MET and PIK3CA are frequently co-amplified, and a high copy number of either gene is associated with poorer prognostic features and the triple negative disease.(2) Additionally, we determined the effect of MET-T1010I, MET-Y1253D and MET overexpression, found in breast cancers, on the activity of the two most common breast cancer PIK3CA mutations (E545K and H1047R), in a model of breast epithelial cells (MCF-10A) and a cell line breast cancer model (HCC1954). Our results suggest that tumors with concurrent aberrations in MET and PIK3CA are likely to be more aggressive and resistant to therapies targeting each pathway, and that combinatorial therapy (with MET and PI3K pathway inhibitors) could circumvent this resistance. This is the first study to investigate the significance of differential expression of cMET and p-cMET in different breast cancer subtypes, to report p-cMET levels as a prognostic factor in breast cancer, and also, the first to report MET gene copy number, its distribution by tumor subtype, and correlation with patient outcome.(2) Our study is also unique for showing that the presence of MET aberrations enhances the tumorigenic effects induced by the PIK3CA mutations in breast cancer/epithelial cells; results from our tumor xenograft models corroborate with these in vitro findings. Moreover, we are the first to provide evidence for the potential activity of combinatorial therapy using MET and PI3K pathway inhibitors against breast cancer

    Anatomía foliar de especies predominantes en bosques y pastizales del Iberá

    Get PDF
    The Iberá macrosystem has several types of vegetation, where in addition to aquatic and marsh vegetation are found hydrophilic forests, savannahs with a predominance of grasses and grasslands with shrub species interspersed among the herbaceous species. Previous studies of leaf anatomy were only carried out on aquatic and marsh plants. In this work, leaf anatomy was studied in predominant or frequent species growing in grasslands and forests of the Iberá macrosystem, with the aim of detecting leaf structural characters that may represent adaptive value to these environments. Leaves of 42 species corresponding to 26 families were analyzed with optical and scanning electron microscopy. Statistical analysis was performed based on a data matrix of the anatomical characters analyzed, also including the environment types in which the species studied grow. The analyzed characters of the epidermis were: cuticle design, stomata, trichomes, design of epidermal cells of both epidermis, where a predominance of identical morphology on both sides was observed. In the mesophyll, the type, presence and form of calcium and inulin crystals, and distribution of glandular structures such as laticifers, cavities and secretory cells were evaluated. The data reported are discussed in relation to the available literature. No constant characters associated with a particular vegetation type are found. Species living in the same environment do not have similar anatomical features, as shown by clustering analysis (UPGMA).El macrosistema Iberá presenta diversos tipos de vegetación, donde además de las acuáticas y palustres hay bosques hidrófilos, sabanas con predominio de gramíneas y praderas con especies arbustivas intercaladas entre las herbáceas. Estudios previos de anatomía foliar solo fueron realizados en plantas acuáticas y palustres. En este trabajo se estudió la anatomía foliar en especies predominantes o frecuentes que crecen en pastizales y bosques del macrosistema Iberá, con el objetivo de detectar caracteres estructurales de las hojas que puedan representar valor adaptativo a estos ambientes. Se analizaron hojas de 42 especies correspondientes a 26 familias, con microscopía óptica y electrónica de barrido. Se realizó un análisis estadístico en base a una matriz de datos, compuesta por los caracteres anatómicos y el ambiente en que crecen las especies estudiadas. Los caracteres analizados de la epidermis fueron: diseño de la cutícula, estomas, tricomas, diseño de células epidérmicas de ambas epidermis, donde se observa un predominio de idéntica morfología en ambas caras. En el mesofilo se evaluó su tipo, presencia y forma de cristales de calcio e inulina, y distribución de estructuras glandulares como laticíferos, cavidades y células secretoras. Los datos reportados son discutidos en relación a la bibliografía disponible. El análisis de agrupamiento (UPGMA) muestra que las especies que habitan en los mismos ambientes no presentan características anatómicas similares

    Functional consequence of the MET-T1010I polymorphism in breast cancer.

    Get PDF
    Major breast cancer predisposition genes, only account for approximately 30% of high-risk breast cancer families and only explain 15% of breast cancer familial relative risk. The HGF growth factor receptor MET is potentially functionally altered due to an uncommon germline single nucleotide polymorphism (SNP), MET-T1010I, in many cancer lineages including breast cancer where the MET-T1010I SNP is present in 2% of patients with metastatic breast cancer. Expression of MET-T1010I in the context of mammary epithelium increases colony formation, cell migration and invasion in-vitro and tumor growth and invasion in-vivo. A selective effect of MET-T1010I as compared to wild type MET on cell invasion both in-vitro and in-vivo suggests that the MET-T1010I SNP may alter tumor pathophysiology and should be considered as a potential biomarker when implementing MET targeted clinical trials

    PI3K Pathway Mutations and PTEN Levels in Primary and Metastatic Breast Cancer

    Get PDF
    The purpose of this work was to determine whether there are differences in PIK3CA mutation status and PTEN protein expression between primary and matched metastatic breast tumors as this could influence patient management. Fifty-micron paraffin sections were used for DNA extraction and 3-micron slides for immunohistochemistry (IHC) and fluorescent in-situ hybridization (FISH). ER, PR and HER2 IHC were repeated in a central laboratory for both primary and metastasis. PTEN levels were assessed by IHC and PI3K pathway mutations detected by a mass spectroscopy-based approach. Median age was 48 years (range, 30 to 83 years). Tumor subtype included 72% hormone receptor-positive/HER2-negative, 20% HER2-positive, and less than 7.8% triple receptor negative. Tissues were available for PTEN IHC in 46 primary tumors and 52 metastases. PTEN was lost in 14 (30%) primary tumors and 13 (25%) metastases. There were 5 cases of PTEN loss and eight cases of PTEN gain from primary to metastasis (26% discordance). Adequate DNA was obtained on 46 primary tumors and on 50 metastases for PIK3CA analysis. PIK3CA mutations were detected in 19 (40%) of primary tumors and 21 (42%) of metastases. There were five cases of PIK3CA mutation loss, and four cases of mutation gain (18% discordance). There was an increase of the level of PIK3CA mutations in four cases, and decrease in one from primary to metastasis. There is a high level of discordance in PTEN level, PIK3CA mutations, and receptor status between primary and metastatic disease that may influence patient selection and response to PI3K-targeted therapies

    An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    Get PDF
    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer

    Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To determine whether functional proteomics improves breast cancer classification and prognostication and can predict pathological complete response (pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based systemic therapy (NST).</p> <p>Methods</p> <p>Reverse phase protein array (RPPA) using 146 antibodies to proteins relevant to breast cancer was applied to three independent tumor sets. Supervised clustering to identify subgroups and prognosis in surgical excision specimens from a training set (n = 712) was validated on a test set (n = 168) in two cohorts of patients with primary breast cancer. A score was constructed using ordinal logistic regression to quantify the probability of recurrence in the training set and tested in the test set. The score was then evaluated on 132 FNA biopsies of patients treated with NST to determine ability to predict pCR.</p> <p>Results</p> <p>Six breast cancer subgroups were identified by a 10-protein biomarker panel in the 712 tumor training set. They were associated with different recurrence-free survival (RFS) (log-rank p = 8.8 E-10). The structure and ability of the six subgroups to predict RFS was confirmed in the test set (log-rank p = 0.0013). A prognosis score constructed using the 10 proteins in the training set was associated with RFS in both training and test sets (p = 3.2E-13, for test set). There was a significant association between the prognostic score and likelihood of pCR to NST in the FNA set (p = 0.0021).</p> <p>Conclusion</p> <p>We developed a 10-protein biomarker panel that classifies breast cancer into prognostic groups that may have potential utility in the management of patients who receive anthracycline-taxane-based NST.</p

    Assessment of a New ROS1 Immunohistochemistry Clone (SP384) for the Identification of ROS1 Rearrangements in Patients with Non–Small Cell Lung Carcinoma: the ROSING Study

    Get PDF
    Introduction: The ROS1 gene rearrangement has become an important biomarker in NSCLC. The College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology testing guidelines support the use of ROS1 immunohistochemistry (IHC) as a screening test, followed by confirmation with fluorescence in situ hybridization (FISH) or a molecular test in all positive results. We have evaluated a novel anti-ROS1 IHC antibody (SP384) in a large multicenter series to obtain real-world data. Methods: A total of 43 ROS1 FISH-positive and 193 ROS1 FISH-negative NSCLC samples were studied. All specimens were screened by using two antibodies (clone D4D6 from Cell Signaling Technology and clone SP384 from Ventana Medical Systems), and the different interpretation criteria were compared with break-apart FISH (Vysis). FISH-positive samples were also analyzed with next-generation sequencing (Oncomine Dx Target Test Panel, Thermo Fisher Scientific). Results: An H-score of 150 or higher or the presence of at least 70% of tumor cells with an intensity of staining of 2+ or higher by the SP384 clone was the optimal cutoff value (both with 93% sensitivity and 100% specificity). The D4D6 clone showed similar results, with an H-score of at least 100 (91% sensitivity and 100% specificity). ROS1 expression in normal lung was more frequent with use of the SP384 clone (p < 0.0001). The ezrin gene (EZR)-ROS1 variant was associated with membranous staining and an isolated green signal FISH pattern (p = 0.001 and p = 0.017, respectively). Conclusions: The new SP384 ROS1 IHC clone showed excellent sensitivity without compromising specificity, so it is another excellent analytical option for the proposed testing algorithm

    Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics

    Get PDF
    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor–positive cancers (34.5%; P = 0.32), 17 of 75 HER-2–positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a “tumorigenic” signature defined using CD44+/CD24− breast tumor–initiating stem cell–like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell–like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore